
J Intell Robot Syst (2012) 67:43–60
DOI 10.1007/s10846-011-9646-5

Quadrocopter Hovering Using Position-estimation
Information from Inertial Sensors and a High-delay
Video System

Matevž Bošnak · Drago Matko · Sašo Blažič
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Abstract The requirement that mobile robots be-
come independent of external sensors, such as
GPS, and are able to navigate in an environ-
ment by themselves, means that designers have
few alternative techniques available. An increas-
ingly popular approach is to use computer vision
as a source of information about the surround-
ings. This paper presents an implementation of
computer vision to hold a quadrocopter aircraft
in a stable hovering position using a low-cost,
consumer-grade, video system. However, such a
system is not able to stabilize the aircraft on its
own and must rely on a data-fusion algorithm
that uses additional measurements from on-board
inertial sensors. Special techniques had to be im-
plemented to compensate for the increased delay
in the closed-loop system with the computer vi-
sion system, i.e., video timestamping to determine
the exact delay of the vision system and a slight
modification of the Kalman filter to account for
this delay. At the end, the validation results of the
proposed filtering technique are presented along
with the results of an autonomous flight as a proof
of the proposed concept.
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1 Introduction

A quadrocopter is a four-rotor helicopter. The
idea of using four rotors is not new as a full-scale
four-rotor helicopter was built by De Bothezat
in 1921. However, quadrocopters are dynamically
unstable and therefore suitable control methods
are needed to make them stable [3]. These control
methods are usually separated into two control
loops—the high-speed, inner loop that controls
the quadrocopter’s attitude based on the outputs
from the IMU (Inertial Measurement Unit) in
a strap-down configuration [43] and the slower,
outer loop that controls the quadrocopter’s posi-
tion. While the attitude of the quadrocopter can
easily be determined by measuring the acceler-
ation due to the Earth’s gravitational field and
the rotational velocities, there are no universal
global positioning systems available. Outdoors,
the GPS (Global Positioning System) that relies
on receiving its signal from satellites can be used,
however, indoors, the quadrocopter must rely on
its own sensors to determine its position in the
environment or on a custom local indoor track-
ing system, that must be built. Indoor tracking
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systems are usually based either on beacon-based
systems that use RF (Radio Frequency) waves (or
a combination of RF and Ultrasonic waves [28])
or on an optical motion tracker (a constellation of
video cameras with corresponding markers fitted
to the quadrocopter) as in [3, 20, 25, 27, 34, 35, 37].
However, relying only on its own sensors and fea-
tures in the environment makes a quadrocopter
autonomous.

Most basic method to detect the movement
of the quadrocopter relative to the ground be-
low is to use a down-facing video camera and
an optical-flow algorithm that compares two con-
sequent captured video frames and extracts the
relative movement of the visible features as was
demonstrated in [16, 18, 24] and even in commer-
cial product AR.Drone [1]. By summing together
the relative optical-flow movements, this visual
odometry data can be used for simple but not fully
reliable positioning [10, 32]. Simplest upgrade for
better positioning solution is to use the features of
a deterministic environment—in [38, 39] authors
used a helipad and in [23] authors used a runway
as a feature, in [12, 32] authors used small cir-
cular landmarks, in [16, 19] authors used a four-
point landing pad marker, in [41] authors used a
Moir’e pattern and in [42] IR LEDs were used
as a target feature. However, non-deterministic
environments require the quadrocopter position-
ing system to build the map of the surroundings
by themselves. Usually, Simultaneous localization
and mapping (SLAM) is used to produce both
the information on the location of the primary
sensor and the map of the environment simulta-
neously. The SLAM algorithms are widely used
in ground robotics [4, 40], but with the optimiza-
tions and improved mobile computing power they
are more frequently used also in the Unmanned
Aerial Vehicles (UAVs) [2, 5] and video gaming
[22, 30]. Our approach uses the artificial fiducial
marker (illustrated in Fig. 2), placed at the known
position in the environment, removing the need of
increased computing power of SLAM algorithms.
Glyph features have the advantage that additional
information (marker identification, its position,
etc.) can be encoded into the feature itself.

Controlling objects using the data from these
video-camera sensors is known as visual servo
control. Visual servo control algorithms have be-

come widely popular and used in the robotics and
automation field in the past few decades. Most
visual servo control systems were initially de-
veloped for serial-link robotic manipulators with
the video camera typically mounted on the end-
effector [21]. But due to the small sizes and weight
of these sensors they are infiltrating the field of
ground and aerial mobile robotics and even into
the field of visual landing-assist technologies for
airplanes [9].

The standard approach to visual servo control
uses image-based measurements that enter the
control loop. There are two similar approaches—
a position-based visual servoing (PBVS) involves
the extraction and reconstruction of the target
pose with respect to the object using a camera and
results in a Cartesian motion-planning problem,
while the image-based visual servoing (IBVS)
treats the problem as one of controlling features
in the image plane and tries to align the extracted
features with the reference ones [19]. The PBVS
approach requires an accurate 3D model of the
target, it is sensitive to video-camera calibration
errors and it displays a tendency for the image
features to leave the video camera’s field of view
and therefore lose the pose estimation. An image-
based visual servoing, on the other hand, is less
sensitive to video-camera non-linearities. How-
ever, PBVS approach enables navigation in the
global coordinates which can be directly comple-
mented with other positioning systems available.

Due to the limited amount of the processing
power available on-board the small aerial ve-
hicles, majority of solutions require the image
processing algorithms to run on the ground sta-
tion and are therefore be physically decoupled
from the vehicle. This configuration imposes new
challenges on how to robustly design the infor-
mation flow between the ground station and the
vehicle. The straight-forward solution is to use
wired communication between the camera and the
ground station (as is presented in [5, 12]), while
the other is a wireless transmission of both the
video camera frames and communication data.
The latter approach can be found in majority of
the papers dealing with the quadrocopters in the
configuration where the ground station computer
also executes the control algorithms ([3, 6, 19, 20,
31, 34, 35, 41, 44] and others), which imposes a
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concern regarding the robustness of such a system
in the cases of the communication drop-outs and
the computer exceeding the real-time execution
slots. The solution to the problem is to move
the control algorithms to the vehicle’s computer,
which receives only the measurement results, ob-
tained via the wireless communication (presented
in [2, 16, 24] and others). This however introduces
additional delays that must be dealt with. This
paper presents our approach to the problem of
fusing the position measurements with a consid-
erable delay for the purpose of controlling the
position of the quadrocopter.

To solve the issues with the delay and lost
data, sensor-fusion methods in combination with
a Kalman-filtering technique can be used [11]. In
[33] different methods to solve the problem of
delayed measurements are described. One is a
method of extrapolating delayed measurements to
present time and still obtain the optimality of the
filter, while the other suggests updating the covari-
ance matrix and the state at a different time. Our
method is similar to the latter and uses past infor-
mation on the system states, such that the states
are directly compared to the measurements, but
the Kalman innovation is then used in the present
time to correct the states. The system uses the on-
board, 6-axis, IMU unit and the image-based posi-
tion data received via the wireless link. The IMU
unit measures the rotational velocities around the
principal axes x, y and z and the accelerations
in the inertial reference frame. The accelerations
are translated into the base reference frame (fixed
to the target on the ground) and used for the
prediction stage of the Kalman filter. The correc-
tion stage with the delay-cancelling technique is
executed only when the new image-based posi-
tion data is received. Because the output of the
Kalman filter is calculated every 10 milliseconds in
the on-board computer, this system is resilient to
short (in the range of one second) communication
interruptions.

The system was put into practice on a quadro-
copter X-3D-BL that is used as a testbed for many
experiments ([5, 13, 20, 31, 35, 35, 37, 42] and
others) and the visual servo control was evaluated
during the dynamic and stationary flight of the
quadrocopter which was affected by the 150 to 300
ms delays in visual system. This paper presents a

slightly modified approach to visual servo control
that provides promising results even with the de-
lays mentioned. The initial analysis of the quadro-
copter’s dynamics is provided; this serves as a
basis for the Kalman-filtering technique described
later on. The innovative system for the delay
approximation is then presented, which comple-
ments the initial Kalman filter.

2 Quadrocopter Dynamics

Any treatment of dynamic quantities involves the
use of coordinate systems. Let us define two co-
ordinate systems that are directly related to the
experiment in this paper. The target coordinate
system T (illustrated in Fig. 1) is a standard,
right-handed, Cartesian coordinate system that
has the origin in the target’s center, the principal
x and y axes in the plane of the target and the
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Fig. 1 Graphical representation of the coordinate systems
used
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axes z in the vertical up direction. The target
is visually asymmetrical and therefore the target
coordinate system can be uniquely defined. The
quadrocopter’s coordinate system K (also illus-
trated in Fig. 1) has its origin in the center of
the quadrocopter’s frame, with the axes aligned
with the quadrocopter rotors’ booms. The axis x
is oriented towards the front boom of the quadro-
copter, axis y towards the left boom and the z
axis faces upwards along the antenna so that K
also defines a right-handed Cartesian coordinate
system. This orientation was selected because of
the acceleration sensors’ orientation.

Let R be the rotational transformation between
K and T , so that R : K → T . As the quadro-
copter’s navigation is based only on the target
coordinate system, the global coordinate system
will not be dealt with in this paper.

The X-3D-BL quadrocopter used in the ex-
periment was already equipped with a low-level
stabilization loop hosted in the low-level mi-
croprocessor that controls the quadrocopter’s
attitude. It uses four, in pairs, counter-rotating
brushless motors with the appropriate brushless-
motor controllers. By delivering power to each
motor independently, the resulting thrust can be
modulated as in the case of a “normal” helicopter
with swashplate-controlled rotors. The high-level
microprocessor has access to the attitude infor-
mation of the low-level processor, the calibrated
measurements of the acceleration, the gyroscope
and magnetic sensors and can take over the con-
trol of the attitude and thrust commands.

The equations of motion for the quadrocopter
can be derived separately for translational and
rotational motion. The rotational motion part of
these equations is already implemented in the
low-level processor and it keeps track of the
quadrocopter’s attitude. Since our goal is to esti-
mate and control the position of the quadrocopter,
the rotation dynamics will not be treated.

Let pT = (x, y, z) be the position of the centre
of mass of the quadrocopter in the target coordi-
nate system. Then, Newton’s equations of transla-
tional motion from the external point of view can
be written as

d2

dt2 pT = 1
m

(
Fth,KR(φ, θ, ψ) − mg − bvT

)
(1)

where Fth,K is the total thrust vector in the quadro-
copter coordinate system, m is the mass of the
quadrocopter treated as a solid body, g is the grav-
itational acceleration vector, vT is the speed of the
quadrocopter in the target coordinate system, b
is a damping factor due to air resistance at slow
speeds (linear drag is assumed) and

R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (2)

where Rx(φ) is a rotational matrix about the x-
axis, Ry(θ) is a rotational matrix about the y-
axis and Rz(ψ) is a rotational matrix about the
z-axis of the quadrocopter coordinate system K.
The onboard acceleration sensor measures both
the static (due to gravitation) and dynamic accel-
erations in the quadrocopter coordinate system K.
Therefore, to estimate the position of the quadro-
copter, based only on the dynamic component of
the acceleration measurement, the following must
be evaluated

d2

dt2 pT = aKR − g (3)

where aK is the acceleration vector in the quadro-
copter’s coordinate system K and g is the gravita-
tional acceleration vector in the target coordinate
system T . Although the acceleration sensor is
calibrated, its output is drifting during normal op-
eration due to various effects (including temper-
ature changes and supply-voltage fluctuations),
which cannot be totally eliminated. Therefore, it
is necessary to take the sensors’ output bias into
account. The acceleration biases ab (given in K)
must be estimated and then subtracted from the
sensor reading as (also given in K) as in

d2

dt2 pT = (as − ab ) R − g (4)

3 Computer Vision System

A computer vision system is one that combines
both hardware and software with the aim to ex-
tract the information from images that is neces-
sary to solve a specific task. In our case the vision
system consists of a small, analogue, colour video
camera with a wireless video transmitter (both
fixed to the quadrocopter), a wireless video re-
ceiver, a computer with a video-capture card and
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the software that was developed for this purpose.
The whole vision system runs in real-time at 20
frames per second.

The vision system extracts the target’s position
and calculates the position of the origin and the
orientation of K relative to T . The software was
developed in Visual C# using the AForge.NET
framework for image processing.

3.1 Image Preparation

In the first step of the image processing, the re-
ceived frame is deinterlaced to reduce the arte-
facts in the subsequent steps. Odd frames are
doubled so that the produced frame has the same
size as the original. Then, the image is transformed
into a grayscale image to reduce the amount of
data to process as only black and white colours are
used for the target glyph.

3.2 Timestamp Extraction

For the purpose of the dynamic delay compensa-
tion, the value of the on-board, 8-bit timer is em-
bedded into every frame as a timestamp (Fig. 2).
This is done by an additional PIC microproces-
sor, which overlays the timer value on top of
the video data in the fourth line of every video
frame. On the ground computer the timestamp is
extracted by analyzing only a strip of pixels in the
timestamped line. The algorithm first searches for

1 0 0 0 0 01 1

Fig. 2 Extracting the timestamp from the captured image

the darkest and the lightest pixels in the strip and
these were used to determine the threshold that
was used to binarize the pixel stripes, producing a
series of white and black stripes of pixels, similar
to a bar code, where the logical 0 is encoded with
the larger ratio between black and white than
logical 1. The combined length of white and black
stripes for each bit is constant.

3.3 Glyph Recognition

The glyph Recognition library GRATF is used for
the glyph extraction. The target glyph (marked
with a border in Fig. 2) is represented by a square
grid divided equally into the same number of rows
and columns. Each cell of the grid is filled with
either a black or white colour. The first and the
last row or column of each glyph contains only
black cells, which creates a black border around
each glyph. Also, we assume that every row and
column has at least one white cell, so there are no
completely black rows and columns (except the
first and the last). A glyph is printed on white
paper in such a way that there is a white area
around the black borders of a glyph [26]. The
glyph-extraction algorithm works on grayscale im-
ages and takes the following steps:

1. The edge-detection algorithm is executed on
the grayscale image to search for the edges
between the black and white borders.

2. The resulting image with edges is transformed
into a black and white image by simple thresh-
olding.

3. The blob-extraction algorithm is executed and
all the connected blobs are identified.

4. The recognized blobs are filtered and checked
to see if they form a quadrilateral shape.

5. The content of each blob is analyzed and
checked with the glyph database to look for
matches.

If there exists a match between the glyph found
in the image and those in the database, the po-
sitions of the glyph’s corner points are extracted
and camera’s viewpoint position is determined in
the next step. Although the timestamp is located
on top of the video frame, there exists a poten-
tial problem with a successful glyph recognition
in cases when the glyph gets overlayed by the
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timestamp or touches the edge of the video frame.
Therefore the autonomous flight of the quadro-
copter in positions, in which target glyph would
touch timestamp or any edge of the video frame,
is avoided.

3.4 Position Determination from the Image

The camera is mounted very close to the center
of the quadrocopter’s frame and thus we assume
that the camera’s viewpoint is at the origin of
the K coordinate system. Also, we assume that
the projective geometry of the pinhole camera is
modelled by a perspective projection [14] with an
additional radial distortion due to the wide-angle
lens mounted on the camera. Wide-angle camera
lenses are widely used in the field of computer vi-
sion; therefore the problem of camera calibration
has received much attention in computer-vision
applications. The most frequently used method is
the polynomial model for camera-distortion re-
moval, but [29] suggested a different mathemati-
cal model for radial distortion based on a camera
and lens projection geometry. Their idea is pre-
sented and followed in the approach below.

To correct the radial distortion, a correspond-
ing model based on the camera and lens projection
geometry is used:

R = f (r) = H
2

1 − e−2r/H

e−r/H
= H sinh

r
H

(5)

where R is the rectified radius, r is the radius
from the distorted image, defined in Eq. 6, and
H is the parameter of the lens, which is deter-
mined with the camera calibration. For a full-
frame rectification, the above expression (5) must
be evaluated for each pixel in the frame, which
introduces increased computational load. How-
ever, the radial distortion does not greatly affect
the glyph recognition algorithm and a full-frame
radial distortion correction was not implemented.
Instead, only the results of the glyph recognition
(glyph corners’ coordinates) are processed.

Let Cx and Cy be the coordinates of a pixel
in the distorted image, and let C′

x and C′
y be the

coordinates of the same pixel in the rectified im-
age. The origin of the transformation (5) is placed

in the centre of the image. The relations between
(Cx, Cy) and (C′

x, C′
y) are as follows:

r =
√

(Cx − Cp
x )2 + (Cy − Cp

y )2,

ϕ = arctan2
(
Cy − Cp

y , Cx − Cp
x
)
,

C′
x = R cos ϕ,

C′
y = R sin ϕ. (6)

where (Cp
x , Cp

y ) are the coordinates of the pixel
in the center of the image and arctan2 is the four-
quadrant version of the inverse tangent function.

After the camera-distortion rectification is per-
formed, a point on the target plane (Tx, Ty, Tz) (in
Fig. 3 this point’s projection onto the x–z plane
is illustrated), whose coordinates are expressed
with respect to the K coordinate system, will
project onto the image plane onto a point C′

x, C′
y,

given by

[
C′

x
C′

y

]
= λν

Tz

[
Tx

Ty

]
(7)

where λ denotes the distance of the viewpoint
origin behind the image plane [21], ν is the pixel
density (in pixels per millimeter) and Tz is the
distance between the viewpoint origin and the
target plane, perpendicular to the image plane.

The value of the variable Tz is calculated from
the size of the recognized glyph (�Tx, �Ty), that
is compared to the size of the glyph in the image

Image plane

z

x

xC’

xT

Viewpoint
origin

Target plane
Target glyph

zT

Fig. 3 Calculating the position of the origin of the K in the
T coordinate system
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(�Cx, �Cy), i.e., the distance between rectified
glyph’s corner points.

Tz = λν

√
�T2

x + �T2
y

�C2
x + �C2

y
= λν

aT

aC
(8)

where aT is the size of the target in millimetres and
aC is the size of the image of the target in pixels.
By combining Eqs. 7 and 8 the coordinates Tx and
Ty can then be obtained

[
Tx

Ty

]
= aT

aC

[
C′

x
C′

y

]
(9)

The expressions (6) and (9) are evaluated for
all four glyph’s corner points, assuming that the
ratio between target size aT and the distance from
the camera’s viewpoint to target Tz is low and
therefore all four distances between the camera’s
viewpoint and the glyph’s corner points are the
same.

The image of the glyph also defines the
z-orientation of the quadrocopter’s coordinate
system with regard to the target coordinate sys-
tem. The angle ψ is calculated from the angle
of the glyph’s diagonal, connecting the top right
(Tx,0, Ty,0) and the bottom left (Tx,2, Ty,2) corners
of the glyph.

ψ = arctan2
Ty,0 − Ty,2

Tx,0 − Tx,2
(10)

To determine the position of K with respect
to T the effect of the video-camera tilt and ori-
entation must be cancelled by rotating the point
T about the x-axis for the angle φ, about the y-
axis for the angle θ and about the z-axis for the
angle ψ .

T f (T f
x , T f

y , T f
z ) = Rz(ψ)Ry(θ)Rx(ψ)

⎡

⎣
Tx,c

Ty,c

Tz,c

⎤

⎦

(11)

where Rx(ψ), Ry(θ) and Rz(ψ) are the stan-
dard rotation matrices about the axes of rota-
tion x, y and z, respectively, and the coordinates

(Tx,c, Ty,c, Tz,c) denote the center of the glyph
(mean position of all four glyph’s corner points).
The rotation matrices are calculated based on
the attitude data of the sensors. The coordinates
(−T f

x , −T f
y , −T f

z ) finally define the origin of K
with respect to T .

4 Position Estimation

Position information, produced by the image
recognition, is subjected to delays and signal out-
ages before it reaches the control input of the
quadrocopter. One major drawback of direct vi-
sual servoing is the need for the target to stay
inside the field of view of the camera. Therefore,
an indirect visual servo control was developed
that uses a combination of local position tracking
using the integrated IMU unit, a dynamic delay
estimation and compensation, an image-based po-
sition estimation and filtering with a Kalman filter
(illustrated in Fig. 4).

As the quadrocopter, as a system, includes
nonlinearities, it is common practice to employ
the Extended Kalman filter (illustrated in Fig. 5),
where a linear approximation is only used for
solving the Riccati equation, a partial result of
which is the Kalman gain. The full nonlinear
model is used in the propagation of the estimate
and in computing the predicted sensor outputs
[17]. This would introduce a heavy load on the
on-board, high-level processor and thus was not
selected for our application. Therefore, a nonlin-
ear part of the quadrocopter system (mainly the
nonlinear coordinate system transformation from
the quadrocopter’s coordinate system K to the
target coordinate system T ) was decoupled from
the linear part of the system and replicated on
the path of the acceleration measurement vector
aK entering the Kalman filter (Fig. 6) in order to
enable aT to enter the Kalman filter directly. This
enabled us to employ a basic (linear) form of the
Kalman filter that presents a much lighter load to
the processor.

4.1 Position Prediction

The position prediction is accomplished by mea-
suring and integrating the dynamic acceleration
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Fig. 4 Block diagram of the system without controller

of the quadrocopter. Unfortunately, the inertial
sensors measure the total acceleration, combin-
ing the effect of the dynamic acceleration due
to velocity change and the effect of gravitational
acceleration. To successfully isolate the dynamic
component from the sensor readings, the sen-
sor biases are first subtracted from the measured
acceleration in the K coordinate system. Then,
the resulting acceleration vector is transformed
to the target coordinate system T (in our exper-
iments, the target coordinate system is, due to
target’s fixed position, effectively the world co-
ordinate system), where the effect of gravity can
be predicted and subtracted from the readings.

Non-linear 
system

Extended
Kalman filter

Quadrocopter
positionAccelerations

Filtered position 
estimate

a p Cp Camera

Fig. 5 Block diagram of the system with the extended
Kalman filter

Transforming the acceleration has one other ma-
jor advantage—position prediction produces the
position of the quadrocopter directly in the target
coordinate system T and the use of nonlinearities
is avoided in further processing, and the Kalman
filter, used to correct the position of the quadro-
copter, can be simplified.

In our experiment, the position prediction is
all done on-board the quadrocopter in the high-
level processor. The calibrated acceleration sensor
readings as,K(k) and the current Euler angles φ, θ

and ψ are transferred periodically from the low-
level processor to the high-level processor, where
the DCM rotation matrix is constructed. As the
position of the x and y axes is swapped, the DCM
rotation matrix has a slightly modified form

RDCM =
⎡

⎣
cφsψ + cψsφsθ cφcψ − sψsφsθ −cθsφ

cθcψ −cθsψ sθ
sφsψ − cφsθcψ sφcψ + cφsθsψ cφcθ

⎤

⎦

(12)

where these abbreviations were used

cφ = cos φ cθ = cos θ cψ = cos ψ

sφ = sin φ sθ = sin θ sψ = sin ψ
(13)
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Fig. 6 Block diagram of
the system with the linear
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With the above DCM matrix the dynamic acceler-
ation vector ad,T in the T coordinate system was
extracted

ad,T (k)=
⎡

⎣
ad,T ,x(k)

ad,T ,y(k)

ad,T ,z(k)

⎤

⎦

=
((

as,K(k)−bK(k)
)T RDCM(k)−[

0 0 g
])T

(14)

where the calibrated acceleration sensor readings
vector as,K(k) and the acceleration sensor bias
vector bK(k) are defined as

as,K(k) =
⎡

⎣
as,K,x

as,K,y

as,K,z

⎤

⎦ bK(k) =
⎡

⎣
b s,K,x

b s,K,y

b s,K,z

⎤

⎦ (15)

The resulting dynamic acceleration is then inte-
grated twice using the Euler method at a rate of
100 times per second. As the sensor biases bK(k)

are unknown and variable, three additional states
for them were added to the system state vector

x(k) =

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

pT ,x(k)

vT ,x(k)

bK,x(k)

pT ,y(k)

vT ,y(k)

bK,y(k)

pT ,z(k)

vT ,z(k)

bK,z(k)

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

(16)

where pT ,x, pT ,y and pT ,z are the positions in
the x, y and z axes, vT ,x, vT ,y and vT ,z are the
velocities along the same axes, bK,x, bK,y and bK,z

are the acceleration sensor biases for all three axes

in the K coordinate system. The system can then
be written in state-space form as

x(k+1) =
⎡

⎣
A0 0 0
0 A0 0
0 0 A0

⎤

⎦x(k)+
⎡

⎣
B0 0 0
0 B0 0
0 0 B0

⎤

⎦ad,T (k)

(17)

y(k) =
⎡

⎣
C0 0 0
0 C0 0
0 0 C0

⎤

⎦ x(k) (18)

where

A0 =
⎡

⎣
1 T 0
0 1 0
0 0 1

⎤

⎦ B0 =
⎡

⎣
T2

2
T
0

⎤

⎦ C0 = [
1 0 0

]
(19)

If Eq. 14 is inserted into Eq. 17, the following
expression is produced

[b ]x(k + 1)

=
⎛

⎝

⎡

⎣
A0 0 0
0 A0 0
0 0 A0

⎤

⎦ x(k) −
⎡

⎣
B0 0 0
0 B0 0
0 0 B0

⎤

⎦

×RT
DCM(k)bK(k)

⎞

⎠

+
⎡

⎣
B0 0 0
0 B0 0
0 0 B0

⎤

⎦

⎛

⎝RT
DCM(k)as,K(k) −

⎡

⎣
0
0
g

⎤

⎦

⎞

⎠

(20)

This system predicts the quadrocopter’s veloc-
ity and position. However, the integration causes
errors to accumulate and the velocity and position
predictions tend to drift.



52 J Intell Robot Syst (2012) 67:43–60

4.2 Kalman Filtering

While the visual tracking system, as mentioned be-
fore, suffers because of a low update rate and the
high delay caused by the image-capture and analy-
sis procedure, the position-prediction stage ex-
hibits a strong tendency to drift over time and the
instantaneous reflection of the position changes of
the quadrocopter. The Kalman-filtering technique
was used to fuse the estimates of both systems
together with the aim to take advantages of them
both.

As can be seen from the Eqs. 16, 17, 18, and 19,
each of the axes can be inspected independently
of each other. Here, we only show the solution for
the x-axis. Identical solutions are applied to the
other two axes. The state vector for the x-axis is
defined as follows

xx(k) =
⎡

⎣
pT ,x(k)

vT ,x(k)

bK,x(k)

⎤

⎦ (21)

The system and measurement processes are
affected by the process noise wx and the mea-
surement noise nx, which are assumed to be in-
dependent of each other, white, and with normal
probability distributions [17]. This produces the
following set of equations in the system space

xx(k + 1) = A0xx(k) + B0ad,T ,x(k) + Fxwx(k)

(22)

yx(k) = C0xx(k) + nx(k) (23)

where Fx is a matrix of the appropriate size.
Usually, the Kalman filter is implemented in

such a way that the following statements are
evaluated:

1. At the time step k a prediction is made for
the time step k + 1: x∗

x(k + 1) = A0x̂x(k) +
B0ad,T ,x(k).

2. Similarly, the prediction of the covariance ma-
trix is produced for time k + 1: P∗

x(k + 1) =
A0P̂x(k)AT

0 + FxVxFT
x , where P̂x(k) is the es-

timation of the covariance matrix at the time
step k, Vx is the covariance matrix of the

process noise wx and Fx is the input matrix of
this noise.

3. In the new time step k, the Kalman gain
matrix is produced first: Kx(k) = P∗

x(k)CT
0 [C0

P∗
x(k)CT

0 + Nx]−1, where Nx is the covariance
matrix of the measurement noise nx(k).

4. The estimation of the system state is then
updated with the innovation: x̂x(k) = x∗

x(k) +
Kx(k)[yx(k) − C0x∗

x(k)].
5. Finally, the estimation of the covariance ma-

trix P̂x(k) is updated: P̂x(k) = P∗
x(k) − Kx(k)

C0P∗
x(k).

For the purpose of implementing linear
Kalman filtering, the system had to be augmented
to take into account the nonlinear properties
of the sensor bias states. The expression (20) is
linearized in the nominal operating point (the
target and quadrocopter frames are parallel) and
the RDCM is assumed to be a unitary matrix. Due
to the fact that bK,x(k) is the last element of the
state vector xx(k), the following can be concluded
from (20):

∂xx(k + 1)

∂xx(k)

∣∣
∣nom. op. point = A0 − B0

[
0 0 1

]

= AL,0 =

⎡

⎢⎢
⎣

1 T −T2

2
0 1 −T
0 0 1

⎤

⎥⎥
⎦ (24)

allowing the bias state to become observable in
order to produce the appropriate Kalman gains.

By assuming that the process defined by
Eqs. 22, 23 is not time-varying and the covariance
matrices Nx and Vx are constant, the previous
steps 2., 3. and 5. can be evaluated separately

1. P∗
x(k + 1) = AL,0P̂x(k)AT

L,0 + FxVxFT
x

2. Kx(k) = P∗
x(k)CT

0 [C0P∗
x(k)CT

0 + Nx]−1

3. P̂x(k) = P∗
x(k) − Kx(k)C0P∗

x(k)

There are several methods available for solving
the steady-state matrix Riccati equation, the serial
iteration being by far the most simple one on
account of its slower convergence [17, 36]. The
above three steps were iteratively executed in
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Matlab until the relative change between two iter-
ations was lower than 10−7. As the measurement
vector has the form

yx(k) = pT ,x(k − d) (25)

where d is a delay of the visual system (more
description of the delay is given in Section 4.3), the
following values for the process and measurement
noise were used:

V0 =
⎡

⎣
σv,p 0 0

0 σv,v 0
0 0 σv,b

⎤

⎦ N0 = σ 2
n (26)

where σv,p = 0.1 cm2, σv,v = 0.1 cm2/s2, σv,b =
0.01 cm2/s4, σn = 2 cm and Tc = dcT = 0.05 s.

This produced the following Kalman gains

K =
⎡

⎣
K0

K0

K0

⎤

⎦ , where K0 = lim
k→∞

K0(k) =
⎡

⎣
0.1552
0.1601
0.0145

⎤

⎦

(27)

Due to the assumption of RDCM being a unitary
matrix and incorporating the effect of sensor ac-
celeration biases into the matrix AL,0 (24) an ad-
ditional step must be included to correctly update
the bias state in the state vector. This was accom-
plished by transforming the bias innovations in all
three axes with RDCM from T back to K before the
state vector was updated.

Such an implementation of the Kalman filter
had a significantly lower complexity of the imple-
mentation on the on-board, high-level processor
as the number of operations over the matrices
was greatly reduced and no matrix needed to be
inverted. State prediction, as the first step in the

filter, was already being made by the position-
tracking system described in Section 4.1 and thus
the Kalman filtering was reduced solely to the
correction step.

4.3 Dynamic Delay Estimation
and Compensation

The visual recognition system used in this ex-
periment is able to analyze the video feed at
around 20 frames per second, which takes about
5 predictions per one measurement update in the
Kalman filter. However, by using the Kalman
filter, the implementation usually requires good
understanding of the delays present in the filter
loop. In our case these cannot be determined
in advance as there is a variable delay present
in the system in the range from 150 to 300 ms,
which is about 15 to 30 prediction steps of the
Kalman filter. As the delay of the visual recog-
nition system could not be predicted, we used
a novel approach of ‘timestamping’ every frame
produced by the camera with the current value of
the on-board timer. Later, the timestamped time
is extracted (see Section 3.2) and included in the
visual recognition data packet that is sent back
from the personal computer to the quadrocopter
(the whole system is illustrated in Fig. 4) where
the delay d is estimated by comparing the current
value of the on-board timer with the timestamped
time, received in the data packet.

To compensate for the delay d of the received
measurement y(k − d), step 4 of the Kalman-
filtering algorithm is slightly modified

x̂(k) = x∗(k) + K′[y(k) − Cx∗(k − d)] (28)

This is illustrated in Fig. 7. The video-camera
frame, captured at the time-step 0, arrives into the
Kalman correction step at the time-step 18, when

Fig. 7 A timeline of
Kalman predictions and
corrections corrections

d=16 d=16 d=18

predictions

time
time-step -1 10 2 3 4 5 6 7... ...98 10 11 12 13 14 15

d=15
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the delay is estimated (in this case the delay is
18 samples). At that time-step, the received mea-
surement y(18) is compared with the prediction
output x∗(18 − 18) (k = 0 is the time when the
video-camera frame was captured). The delayed
prediction output is fetched from the FIFO-style
buffer, which was designed to store the prediction
outputs for the delays of up to 256 time-steps.

As can also be seen in Fig. 7, the predictions
are executed at a regular rate of 100 predictions
per second, while the corrections are executed
at a much lower rate with irregular intervals. To
accommodate these irregularities, the correction
time instants are defined by the variable c(k):

c(k) =
⎧
⎨

⎩

1, if new camera data is available at
time-step k

0, otherwise

(29)

With this approach, the delay has been effec-
tively transferred into the Kalman filter correction
loop and as the paper [33] suggests, the pre-
calculated Kalman filter gain has to be adjusted
to ensure the filter’s optimality. The modified
Kalman gain K′ can be calculated as in

K′ =
[

d−1∏

i=0

(I − K(k − i)C(k − i))A(k − i − 1)

]

K(k)

(30)

which in our case only depends on the delay d and
therefore A1 = A2... = Ak, C1 = C2... = Ck. As
the correction step of the Kalman filter is executed
only in time-steps in which the delayed measure-
ment data y(k) is available, the following can be
defined

K(k) =
{

K, c(k) = 1
0, c(k) = 0

(31)

With definition (31) the filter with discontinuous
executions of the correction steps can be handled
as a generic Kalman filter. Half-duplex commu-
nication, the usage of a non-real-time operating

system and various other effects impact on the
amount of delay of the visual system (the delay
between the moment when the measurement of
the state x(k − d) is produced and corresponding
y(k) is received). On the other hand, the video
camera captures frames regularly every 5 time-
steps. This means that during the delay of the
visual system 3 to 6 visual system results are re-
ceived by the quadrocopter and thus the same
number of Kalman-filter corrections were exe-
cuted (illustrated in Fig. 7).

At each correction step the gain of Kalman
filter is recalculated using Eq. 30

K f = [
(I − KC)A

]ρ K (32)

where ρ is the delay expressed in number of
Kalman gain corrections in the delay period and
is obtained by the following expression

ρ =
d∑

i=0

c(k − i). (33)

4.4 States Correction on Camera-image
Re-acquisition

Using a Kalman filter when fusing the data from
the IMU unit and the vision system, based on a
camera with a limited view, resulted in a major
disadvantage in transient responses at the mo-
ments when the target was re-acquired after leav-
ing the video camera’s field of view (left graphs
in Fig. 8). In this case, many predictions are exe-
cuted without the correction step of the Kalman
filter and the state estimates start to drift. When
the correction steps are executed again, relatively
high Kalman gains cause unwanted oscillations of
the filter estimate, which is not the result of the
Kalman gain, defined in Eq. 32, as there are no
measurements available when the target is out of
the field of view of the camera and thus not re-
lated to the delay of the measurements. Even in a
full Kalman-filter implementation, the covariance
matrix P0 would get larger in each time-step in
the absence of measurements and the resulting
greater Kalman gain would produce even larger
overshooting of the state estimates.

In these moments, vision-system measurements
of the position have a much greater confidence
level than the prediction outputs and therefore the
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Fig. 8 The effect of resetting the Kalman filter after a longer period of absence of the visual data. Left Filter outputs with
no state resetting. Right Filter outputs with states resetting

states that reflect the quadrocopter’s position can
be directly updated with the help of the value of
innovation, while the existing velocity states are
used to predict the position from the time-step
k − d to k. The following resetting procedure is
triggered when the vision-system measurements
are absent for more than 100 predictions:

xp(k − d) := y(k)

xp(k−d + i) := xp(k−d + i) + (y(k)− xp(k − d)))

i = 1 . . . d

(34)

where xp(k) is defined as the position subvector of
the state vector x(k):

xp(k) =
⎡

⎣
pT ,x(k)

pT ,y(k)

pT ,z(k)

⎤

⎦ (35)

Experiments showed that this mechanism did
not affect the Kalman filter during normal op-
eration, but provided vital fast settling times at
transient moments (right-hand graphs in Fig. 8,
where the presence of video-camera data is shown
as the value 50 and the absence of it with the
value 0).

4.5 Experimental System

The quadrocopter as a system clearly has an inte-
grating nature and as such requires position and
velocity feedback controller loops for a stable
hovering position. However, due to various exter-
nal effects and a varying of the main-battery volt-
age, the quadrocopter’s position exhibits a strong
drift if the input signal is set to a constant value.
This requires an additional integral controller to
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Fig. 9 The validation of the Kalman-filter outputs with the Vicon measurements

be added to the state-feedback controller. This
was accomplished by state augmentation [15] in
order to include an additional integral state. A
linear state-space model of the system (17), (18),

(19) was augmented with the state χI (here shown
for the x-axis only)

χI,x(k + 1) = χI,x(k) + pT ,x(k) (36)

Fig. 10 The position
error of the proposed
filtering system with
respect to the Vicon
measurements
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The following control law was used

u(k) = − [
Kχ,x Kp,x Kv,x

]
⎡

⎣
χI,x(k + 1)

pT ,x(k + 1)

vT ,x(k + 1)

⎤

⎦ (37)

where the controller parameters were obtained by
the pole placement method and rounded up to the
following values:
[

Kχ,x Kp,x Kv,x
] = [

1 50 45
]

[
Kχ,y Kp,y Kv,y

] = [
1 50 45

]

[
Kχ,z Kp,z Kv,z

] = [
8 95 40

]
(38)

5 Experimental Results

5.1 Visual System and Kalman Filtering
Validation

The functions of both the visual system and the
Kalman filtering were validated in the laboratory
using the Vicon motion capture system that pro-
vides high frequency position measurements with

sub-mm accuracy. For this purpose, six passive, in-
frared markers were attached to the quadrocopter
and while the quadrocopter was flown manually
above the target, the produced trajectory of all
six markers and the estimations of the Kalman
filter were recorded. From the positions of the
markers, the position of the quadrocopter’s center
was calculated and compared to the Kalman-filter
estimates of the position. The video of the ex-
periment is available at [7]. The results, displayed
in Figs. 9 and 10, show good matching for both
measured trajectories. Between t = 15.6 s and t =
16.8 s and between t = 23.6 s and t = 26.2 s the
target was out of camera’s view and no position
data from the visual system was present. In these
periods, the filter output shows a drift of the posi-
tion estimation.

5.2 Autonomous Flight

Experiments were made in the same laboratory
environment as before. A human pilot was flying
the quadrocopter to the vicinity of the target on

Fig. 11 Quadrocopter’s
position in autonomous
hovering mode
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Fig. 12 The position
error of the proposed
filtering system with
respect to the Vicon
measurements in
autonomous hovering
mode
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the floor so that the target came into the field of
view of the video camera. Then, a switch on the
remote control was triggered causing the quadro-
copter to begin hovering in autonomous mode.
The reference position was a point 70 cm above
the center of the target. The results are shown in
Figs. 11 and 12 for each axis independently. The
video of the experiment is available at [8].

At the beginning there is a short transient of
the filter outputs due to the target appearing in
the video camera’s field of view. After that, the
Kalman filter position output is ’locked’ to the
position of the quadrocopter above the target.
During the hover, the camera was obstructed mul-
tiple times by waving a hand in front of camera (il-
lustrated in Fig. 13), which is clearly noticeable by
multiple vertical No camera data regions and most
of times only slightly affected the autonomous
hovering.

At t = 44 s, the quadrocopter was pushed
slightly away from its reference position to
demonstrate the response to the external distur-
bances. At t = 47 s, the quadrocopter was pulled
away from the target and the camera lost the

target from the field of view. The loss of visual
system data lasted for more than a second and
the on-board processor was not able to produce
a valid prediction anymore. A human pilot had to

Fig. 13 Obstructing the camera during the autonomous
hover
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take over the control of the quadrocopter and land
it safely.

6 Conclusions and Future Work

6.1 Conclusions

The presented solution to the problem of fus-
ing the variously delayed measurements in the
Kalman filter is a result of beginning the re-
search in this field. However, the early results
look promising as a basis for advanced research
and for the implementation of better control al-
gorithms and an autonomous landing system. The
experiments also show that the Extended Kalman
filter for this system can successfully be avoided
(as described in Section 4) with the aim to im-
plement the system in a low-cost, embedded-
microcontroller-based system.

6.2 Future Works

Future work will focus on the improvement of
the control of the quadrocopter to increase its
performance in both reference changes tracking
and disturbance rejection. Both the video recog-
nition and the control will be updated to allow
the quadrocopter to perform autonomous take-off
and landing manoeuvres. Focus will also be given
on the updates that will allow the quadrocopter to
fly outside the view of the primary landing target.
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40. Teslić, L., Skrjanc, I., Klancar, G.: Using a LRF sensor
in the Kalman-filtering-based localization of a mobile
robot. ISA Transactions 49(1), 145–153 (2010)

41. Tournier, G.P., Valenti, M., How, J.P., Feron, E.:
Monocular vision and moiré patterns. In: AIAA (2006)

42. Wenzel, K.E., Rosset, P., Zell, A.: Low-cost visual
tracking of a landing place and hovering flight control
with a microcontroller. J. Intell. Robot. Syst. 57(1–4),
297–311 (2009)

43. Zhang, P., Gu, J., Milios, E., Huynh, P.: Naviga-
tion with IMU/GPS/digital compass with unscented
Kalman filter. In: Proceedings of the IEEE Interna-
tional Conference on Mechatronics and Automation,
vol. 3, pp. 1497–1502. IEEE (2005)

44. Zhang, T., Kang, Y., Achtelik, M., Kuhnlenz, K., Buss,
M.: Autonomous hovering of a vision/IMU guided quad-
rotor. In: 2009 International Conference on Mecha-
tronics and Automation, pp. 2870–2875. IEEE (2009)

http://www.aforgenet.com/articles/glyph_recognition/
http://www.aforgenet.com/articles/glyph_recognition/

	Quadrocopter Hovering Using Position-estimation Information from Inertial Sensors and a High-delay Video System
	Abstract
	Introduction
	Quadrocopter Dynamics
	Computer Vision System
	Image Preparation
	Timestamp Extraction
	Glyph Recognition
	Position Determination from the Image

	Position Estimation
	Position Prediction
	Kalman Filtering
	Dynamic Delay Estimation and Compensation
	States Correction on Camera-image Re-acquisition
	Experimental System

	Experimental Results
	Visual System and Kalman Filtering Validation
	Autonomous Flight

	Conclusions and Future Work
	Conclusions
	Future Works

	References



